Abstract
In cellular vehicular communications, high density and mobility of vehicles require frequent resource allocation, which can cause network congestion and large signalling and processing delay. To overcome this problem, we propose a novel semi-persistent resource allocation scheme based on a two-tier heterogeneous network architecture. The architecture includes a central macro base station (MBS) and multiple roadside units (RSU). In the proposed semi-persistent scheme, the MBS pre-allocates persistent resource to RSUs based on predicted traffic, and then allocates dynamic resource upon real-time requests from RSUs while vehicles simultaneously communicate using the pre-allocated resource. A simple Space-Time k-Nearest Neighbour (ST-kNN) method is developed for short-term traffic prediction, and a geometric water-filling algorithm is developed for minimizing the relative latency. Simulation results validate the effectiveness of the proposed semi-persistent scheme in comparison with two benchmark schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.