Abstract

Time-to-event data often violate the proportional hazards assumption inherent in the popular Cox regression model. Such violations are especially common in the sphere of biological and medical data where latent heterogeneity due to unmeasured covariates or time varying effects are common. A variety of parametric survival models have been proposed in the literature which make more appropriate assumptions on the hazard function, at least for certain applications. One such model is derived from the First Hitting Time (FHT) paradigm which assumes that a subject's event time is determined by a latent stochastic process reaching a threshold value. Several random effects specifications of the FHT model have also been proposed which allow for better modeling of data with unmeasured covariates. While often appropriate, these methods often display limited flexibility due to their inability to model a wide range of heterogeneities. To address this issue, we propose a Bayesian model which loosens assumptions on the mixing distribution inherent in the random effects FHT models currently in use. We demonstrate via simulation study that the proposed model greatly improves both survival and parameter estimation in the presence of latent heterogeneity. We also apply the proposed methodology to data from a toxicology/carcinogenicity study which exhibits nonproportional hazards and contrast the results with both the Cox model and two popular FHT models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.