Abstract

Generalizing the well known and exploited relation between Heyting and Nelson algebras to semi-Heyting algebras, we introduce the variety of semi-Nelson algebras. The main tool for its study is the construction given by Vakarelov. Using it, we characterize the lattice of congruences of a semi-Nelson algebra through some of its deductive systems, use this to find the subdirectly irreducible algebras, prove that the variety is arithmetical, has equationally definable principal congruences, has the congruence extension property and describe the semisimple subvarieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.