Abstract

In a 2021 paper, M. Just and the second author defined a class of “semi-modular forms” on $${\mathbb {C}}\backslash {\mathbb {R}}$$ , in analogy with classical modular forms, that are “half modular” in a particular sense; and constructed families of such functions as Eisenstein-like series using symmetries related to integer partitions. Looking for further natural examples of semi-modular behavior, here we construct a family of Eisenstein-like series to produce semi-modular forms, using symmetries related to Fibonacci numbers instead of partitions. We then consider other Lucas sequences that yield semi-modular forms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.