Abstract

Fiber tractography based on Diffusion MRI measurements is a valuable tool for the detection and visual representation of neural pathways in vivo. We present a novel fiber orientation distribution function (ODF) based streamline tractography approach which incorporates information of neighboring regions derived from a Bayesian model. In each iteration step, the proposed algorithm defines a set of candidate fiber fragments continuing the already tracked path and assigns an a-posteriori probability. We compute the posterior as the normalized product of a likelihood function based on the given ODF-field and a prior distribution representing anatomical plausibility of a candidate fiber fragment with respect to tract curvature derived from the previously tracked fiber path by an extrapolation strategy. We derive both a deterministic tractography algorithm obtaining in each iteration a tracking direction by maximum a-posteriori estimation, as well as a probabilistic version drawing a direction from the marginalized posterior distribution. Compared to fiber tracking methods that rely only on the local ODF, the proposed algorithm proves more robust in the presence of noise and partial volume effects. We demonstrate the effectiveness of both our deterministic and probabilistic method on simulated, phantom, and in vivo data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.