Abstract

Let $X$ be a non-collapsing Ricci limit space and let $x\in X$. We show that for any $\epsilon>0$, there is $r>0$ such that every loop in $B_t(x)$ is contractible in $B_{(1+\epsilon)t}(x)$, where $t\in(0,r]$. In particular, $X$ is semi-locally simply connected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.