Abstract
The inversion of the ray transform on the hyperbolic plane has applications in geophysical exploration and in medical imaging techniques (such as electrical impedance tomography). The geodesic ray transform has been studied in more general geometries and including attenuation, but all of the available inversion formulas require knowledge of the ray transform for all the geodesics. In this paper we present a different inversion formula for the ray transform on the hyperbolic plane, which has the advantage of only requiring knowledge of the ray transform in a reduced family of geodesics. The required family of geodesics is directly related to the set where the original function is to be recovered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.