Abstract

In this paper, our goal is to efficiently solve the Vlasov equation on GPUs. A semi-Lagrangian discontinuous Galerkin scheme is used for the discretization. Such kinetic computations are extremely expensive due to the high-dimensional phase space. The SLDG code, which is publicly available under the MIT license, abstracts the number of dimensions and uses a shared codebase for both GPU and CPU based simulations. We investigate the performance of the implementation on a range of both Tesla (V100, Titan V, K80) and consumer (GTX 1080 Ti) GPUs. Our implementation is typically able to achieve a performance of approximately 470 GB/s on a single GPU and 1600 GB/s on four V100 GPUs connected via NVLink. This results in a speedup of about a factor of ten (comparing a single GPU with a dual socket Intel Xeon Gold node) and approximately a factor of 35 (comparing a single node with and without GPUs). In addition, we investigate the effect of single precision computation on the performance of the SLDG code and demonstrate that a template based dimension independent implementation can achieve good performance regardless of the dimensionality of the problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.