Abstract

The isotropic property at home configuration for a semi-regular Stewart platform manipulator with equal leg lengths has been found to be nonachievable by kinematic design optimization study. In this context, a new approach of design optimization has been formulated here for achieving semi-isotropicity through variable transformation that has rendered the constrained optimization over a finite workspace to infinite workspace in the transformed domain. The proposed minimization methodology of a positive definite function for all the angular and translational motion has exhibited strong convergence to zero for values of the design parameters that can be worked out as a closed-form solution only for the cases of linear translation. Finally, the variations of the condition number over the permissible range of all single-degree-of-freedom motions have been carried out. The absence of any other minima in the entire workspace has clearly established the home position as globally optimized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call