Abstract

The Chattian-Aquitanian carbonate system of Isili sub-basin (SE Sardinia, Italy) were studied to better understand the hydrodynamic processes controlling the formation of landward-downlapping, rhodolith-rich, giant clinoforms.The studied flat-topped platform was attached to an island (semi-isolated) and migrated onshore (landward) over a shallow marine, protected embayment. The depositional profile is characterized by four, sea to land, zones: seaward slope, flat-topped platform (submerged flat), landward slope and mixed siliciclastic-carbonate embayment. In particular, these zones record different levels, from high to moderate, of hydrodynamic energy and persistency. The paleodepth of the studied succession, based on T/D test on Amphistegina specimens, red-algal genera and geometric reconstruction of the overall system, ranges from −10 to −30m for the platform up to around −40m for the landward slope base. Thus, the flat-topped platform was permanently submerged and an extensive carbonate (sea grass, algal and bryozoan-algal) factory along with oyster framestones developed. The widespread presence in the barren zones of rhodolith-to-shell rich small to very small compound dunes (high-energy zone) suggests that the flat-topped platform was periodically swept by unidirectional, landward-directed currents. These currents allow the formation of large-scale, rhodolith-rich clinobeds along the landward slope (washover fan-like system). The presence of rodolith pavements developed along the flat-topped platform at or slightly below the fairweather wave base suggests that clinobeds were formed in a nearshore, shallow subtidal setting. Finally, the shallow marine, protected embayment (moderate-energy zone) represents the widening distal reaches of the currents flowing or along the clinoforms or from the coast basinward (river floods and/or ebb tidal currents).Despite few tidal-related sedimentary structures such as bi-directional ripples and small compound dunes separated by finer-grained “drapes” or reactivation surfaces were observed, the prevailing processes acting over the platform are unidirectional, landward-directed currents possibly associated with longshore currents and/or wave actions. However, the resultant migration of the whole system onshore (landward) cannot be easily explained with storm or wind-related processes. Thus the studied flat-topped platform seems to be controlled by long term tidal regulation within a meso to macro tidal regime. In particular, such meso/macro tidal environments experience multiannual to multidecennial phases of stronger/weaker tidal range fluctuations resembling periods of relatively sea highs and lows with respect to the mean sea level (0m). All the (wind, storm, wave and tidal) currents sweeping the flat-topped platform were maxima during phases of strong tidal fluctuations generating erosion and sediment transportation over the flat and accumulation on the landward slope (clinobeds). Conversely, during phases of weaker tidal range fluctuations overall currents were minima, clinoforms did not develop and factories widespread re-colonized the submerged flat. Therefore, the studied platform developed in a current-dominated and tidal modulated setting.Finally, the studied carbonates of Sardinia suggest that the Sardinian seaway and the incipient Provençal basin during the Chattian-Aquitanian were, locally, capable to generate meso to macro tidal conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call