Abstract

A series of nanocomposite elastomers are prepared by dispersing surface-modified silica Janus nanoparticles into semi-interpenetrating network (Semi-IPN) of polyurethane/polyethyl methacrylate. Benefiting from the hierarchically crosslinked structures that consist of physical interlocking mediated by hydrogen-bond-rich silica Janus nanoparticles and permanent crosslinking by Semi-IPN, these elastomers exhibit excellent mechanical properties. Moreover, the Janus nanosheet is found more effective in strengthening and toughening the Semi-IPN, in comparison to Janus hollow sphere. Since 1,2-dioxetane is covalently embedded in these elastomers as a mechanoluminescent stress probe, stress transfer between the polymer and Janus nanoparticles and the toughening mechanism can be illuminated, which offer exciting opportunities to study the failure process of complex polymer nanocomposites with high spatial and temporal resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call