Abstract

Abstract The study of molecular dynamics by broadband dielectric spectroscopy (BDS) is presented for polyurethane (PU), poly(2-hydroxyethyl methacrylate) (PHEMA) and for semi-IPNs based on PU and PHEMA synthesized by photopolymerization. The dielectric properties were performed in wide range of frequencies and temperatures with the goal to establish the relation between the relaxations and the structure. Five relaxation phenomena were finally detected for PHEMA : γ -, β sw -, β-relaxations at low temperatures and α-relaxation at 150 °C at high frequencies plus ionic conductivity relaxation which starts at 0 °C. For semi-IPNs the overlapping of γ- and β sw -relaxations of PHEMA (−125/−75 °C), then with increasing the temperature α-relaxation in PU (−75/0 °C), next ionic conductivity relaxation which starts at 0 °C, and finally the α-relaxation of PHEMA (+125/+170 °C) were detected. The α-relaxation of PHEMA in semi-IPNs shifts to lower temperatures and became broader with increasing amount of PU due to incomplete phase separation in the system and formation of interphases. The dielectric relaxation phenomena were fitted with Havriliak–Negami equation. Activation energy, τ o and α parameters were calculated. For α-relaxations corresponding dielectric characteristics have been determined from Vogel–Fulcher–Tammann equation. The relaxation map for investigated PU, PHEMA and semi-IPNs was built.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.