Abstract

Implicit time integration involving the solution of large systems of equations is the current paradigm for time-dependent radiative transfer. In this paper we present a semi-implicit, linear discontinuous Galerkin method for the spherical harmonics ( P N ) equations for thermal radiative transfer in planar geometry. Our method is novel in that the material coupling terms are treated implicitly (via linearizing the emission source) and the streaming operator is treated explicitly using a second-order accurate Runge–Kutta method. The benefit of this approach is that each time step only involves the solution of equations that are local to each cell. This benefit comes at the cost of having the time step limited by a CFL condition based on the speed of light. To guarantee positivity and avoid artificial oscillations, we use a slope-limiting technique. We present analysis and numerical results that show the method is robust in the diffusion limit when the photon mean-free path is not resolved by the spatial mesh. Also, in the diffusion limit the time step restriction relaxes to a less restrictive explicit diffusion CFL condition. We demonstrate with numerical results that away from the diffusion limit our method demonstrates second-order error convergence as the spatial mesh is refined with a fixed CFL number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.