Abstract

This study aims to develop a semi-implicit constitutive integration algorithm for a class of elastoplastic damage models where calculation of damage energy release rates involves integration of free energy. The constitutive equations with energy integration are split into the elastic predictor, plastic corrector, and damage corrector. The plastic corrector is solved with an improved format of the semi-implicit spectral return mapping, which is characterized by constant flow direction and plastic moduli calculated at initial yield, enforcement of consistency at the end, and coordinate-independent formulation with an orthogonally similar stress tensor. The tangent stiffness consistent with the updating algorithm is derived. The algorithm is implemented with a recently proposed elastoplastic damage model for concrete, and several typical mechanical tests of reinforced concrete components are simulated. The present semi-implicit algorithm proves to achieve a balance between accuracy, stability, and efficiency compared with the implicit and explicit algorithms and calculate free energy accurately with small time steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.