Abstract

General m × m triangular systems of conservation laws in one space dimension are considered. These systems arise in applications like multi-phase flows in porous media and are non-strictly hyperbolic. Simple and efficient finite-volume schemes of the Godunov type are devised. These are based on a local decoupling of the system into a series of single conservation laws with discontinuous coefficients and are hence termed semi-Godunov schemes. These schemes are not based on the characteristic structure of the system. Some useful properties of the schemes are derived and several numerical experiments demonstrate their robustness and computational efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.