Abstract
Abstract. The semi-global optimization algorithm, which approximates a global 2D smoothness constraint by combining several 1D constraints, has been widely used in the field of image dense matching for digital surface model (DSM) generation. However, due to occlusion, shadow and textureless area of the matching images, some inconsistency may exist in the overlapping areas of different DSMs. To address this problem, based on the DSMs generated by semi-global matching from multiple stereopairs, a novel semi-global merging algorithm is proposed to generate a reliable and consistent DSM in this paper. Two datasets, each covering 1 km2, are used to validate the proposed method. Experimental results show that the optimal DSM after merging can effectively eliminate the inconsistency and reduce redundancy in the overlapping areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.