Abstract

This paper analyzes an initial/boundary value problem for a system of equations modelling the nonstationary flow of a nonhomogeneous incompressible asymmetric (polar) fluid. Under conditions similar to those usually imposed to the nonhomogeneous 3D Navier–Stokes equations, using a spectral semi-Galerkin method, we prove the existence of a local in time strong solution. We also prove the uniqueness of the strong solution and some global existence results. Several estimates for the solutions and their approximations are given. These can be used to find useful error bounds of the Galerkin approximations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call