Abstract
AbstractAdoptive T cell therapy (ACT) has achieved remarkable results in the treatment of cancer. Tumor‐antigen specific T cells are the main players in the clearance of cancerous cells, but generating large numbers is a major hurdle in clinical practice. One shortcoming of current expansion procedures is that the artificial presentation of T cell activating signals on rigid surfaces do not recapitulate the physiological presentation on a fluidic membrane. To address this, semi‐flexible poly(isocyanopeptide) (PIC) immunofilaments (IFs) are generated coated on micro‐sized magnetic beads (immunobrushes (IB)). IBs are functionalized with peptide‐loaded major histocompatibility complexes (pMHC, signal 1) and agonistic anti‐CD28 antibodies (αCD28, signal 2) to effectively expand and enrich antigen‐specific T cells. As a direct result of the immunobrush design, strong T cell activation and excellent tumor cell killing capacities are found. More importantly, high selectivity is demonstrated by strong expansion and enrichment of antigen‐specific T cells in a pool of non‐specific cells (93‐fold enrichment of antigen specific T cells in 7 days). The modular character of the immunobrush‐based strategy makes it a great platform for highly effective ACT‐based therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.