Abstract

Odour-baited technologies are increasingly considered for effective monitoring of mosquito populations and for the evaluation of vector control interventions. The BG-Malaria trap (BGM), which is an upside-down variant of the widely used BG-Sentinel trap (BGS), has been demonstrated to be effective to sample the Brazilian malaria vector, Anopheles darlingi. We evaluated the BGM as an improved method for sampling the African malaria vectors, Anopheles arabiensis. Experiments were conducted inside a large semi-field cage to compare trapping efficiencies of BGM and BGS traps, both baited with the synthetic attractant, Ifakara blend, supplemented with CO2. We then compared BGMs baited with either of four synthetic mosquito lures, Ifakara blend, Mbita blend, BG-lure or CO2, and an unbaited BGM. Lastly, we compared BGMs baited with the Ifakara blend dispensed via either nylon strips, BG cartridges (attractant-infused microcapsules encased in cylindrical plastic cartridge) or BG sachets (attractant-infused microcapsules encased in plastic sachets). All tests were conducted between 6P.M. and 7A.M., with 200–600 laboratory-reared An. arabiensis released nightly in the test chamber. The median number of An. arabiensis caught by the BGM per night was 83, IQR:(73.5–97.75), demonstrating clear superiority over BGS (median catch = 32.5 (25.25–37.5)). Compared to unbaited controls, BGMs baited with Mbita blend caught most mosquitoes (45 (29.5–70.25)), followed by BGMs baited with CO2 (42.5 (27.5–64)), Ifakara blend (31 (9.25–41.25)) and BG lure (16 (4–22)). BGM caught 51 (29.5–72.25) mosquitoes/night, when the attractants were dispensed using BG-Cartridges, compared to BG-Sachet (29.5 (24.75–40.5)), and nylon strips (27 (19.25–38.25)), in all cases being significantly superior to unbaited controls (p < 000.1). The findings demonstrate potential of the BGM as a sampling tool for African malaria vectors over the standard BGS trap. Its efficacy can be optimized by selecting appropriate odour baits and odour-dispensing systems.

Highlights

  • Large-scale implementation of the two front-line vector control interventions against African malaria vectors, i.e., long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), have led to major reductions in malaria cases contributing just over three quarters of all gains since 2000 [1]

  • The BG-Malaria trap (BGM) trap was tested against the BG-Sentinel trap (BGS) trap in a binary choice assay and both traps baited with Ifakara blend (IB) and CO2

  • The BGM trap was the more effective trap in capturing mosquitoes [Relative risks (RR) = 2.76, 95%Confidence Intervals (CI): (1.95–3.89), p < 0.001] as compared to BGS trap

Read more

Summary

Introduction

Large-scale implementation of the two front-line vector control interventions against African malaria vectors, i.e., long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), have led to major reductions in malaria cases contributing just over three quarters of all gains since 2000 [1]. Despite these gains, there appears to be persistent transmission, a significant proportion of which may be occurring outdoors and is not targeted effectively by LLINs and IRS [2, 3]. Examples of odour-baited traps or human-baited traps previously used for malaria mosquitoes include, the Suna Trap [23], Odour-Baited Mosquito Entry Trap [20, 24], Ifakara-Tent Trap [20], Ifakara Odour-baited stations [25], the MMX trap [26, 27], the Mosquito Landing Box [18] and BG-Sentinel Trap [28]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call