Abstract

Hydrazoic acid (HN3) is used as a case study for investigating the accuracy and precision by which a molecular structure-specifically, a semi-experimental equilibrium structure (re SE)-may be determined using current state-of-the-art methodology. The influence of the theoretical corrections for effects of vibration-rotation coupling and electron-mass distribution that are employed in the analysis is explored in detail. The small size of HN3 allowed us to deploy considerable computational resources to probe the basis-set dependence of these corrections using a series of coupled-cluster single, double, perturbative triple [CCSD(T)] calculations with cc-pCVXZ (X = D, T, Q, 5) basis sets. We extrapolated the resulting corrections to the complete basis set (CBS) limit to obtain CCSD(T)/CBS corrections, which were used in a subsequent re SE structure determination. The re SE parameters obtained using the CCSD(T)/cc-pCV5Z corrections are nearly identical to those obtained using the CCSD(T)/CBS corrections, with uncertainties in the bond distances and angles of less than 0.0006 Å and 0.08°, respectively. The previously obtained re SE structure using CCSD(T)/ANO2 agrees with that using CCSD(T)/cc-pCV5Z to within 0.000 08 Å and 0.016° for bond distances and angles, respectively, and with only 25% larger uncertainties, validating the idea that re SE structure determinations can be carried out with significantly smaller basis sets than those needed for similarly accurate, strictly ab initio determinations. Although the purely computational re structural parameters [CCSD(T)/cc-pCV6Z] fall outside of the statistical uncertainties (2σ) of the corresponding re SE structural parameters, the discrepancy is rectified by applying corrections to address the theoretical limitations of the CCSD(T)/cc-pCV6Z geometry with respect to basis set, electron correlation, relativity, and the Born-Oppenheimer approximation, thereby supporting the contention that the semi-experimental approach is both an accurate and vastly more efficient method for structure determinations than is brute-force computation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call