Abstract
The flow field around the isolated Bo105 fuselage including the tail boom and empennage is computed by an unsteady panel code. Velocities normal to the rotor rotational plane are extracted in a volume around the rotor as a data base. A simple semi-empirical analytical formulation of the fuselage-induced velocities, based on parameter estimation from the panel code data, is extended to include rotor shaft angles of attack from $$\alpha =-90^{\circ }$$ (hover, vertical climb) to +90° (vertical descent) for use in comprehensive rotor codes. This model allows the computation of fuselage–rotor interferences on the rotor blade element level in a simplified form, thus eliminating the need for costly CFD computation (of this effect). It also allows the prediction of the rotor wake geometry deformation due to the presence of the fuselage in both prescribed wake and free-wake codes. Its impact on rotor thrust, power and trim is estimated analytically using blade element momentum theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.