Abstract

The use of in situ hyperspectral reflectance and bio-physical measurements has been increasing in forestry. Due to limited physical accessibility in a forest environment, most of the reflectance measurements of trees are acquired at a leaf or bunch of leaves level. A few radiative transfer models are available for upscaling leaf spectra to canopy level. While these models are sophisticated, they retrieve canopy spectra based on certain assumptions. We propose ‘semi-empirical model for upscaling leaf spectra (SEMULS)’ which upscales in situ leaf spectra to canopy level based on the relationship between leaf spectra and its bio-physical parameters. The performance of the model has been quantitatively validated by comparing the upscaled canopy spectra with spectra from – CHRIS hyperspectral imagery acquired concurrently and from the PROSAIL model. Results indicate that the SEMULS retrievals are comparable with image spectra and PROSAIL with additional advantages of not requiring scene-dependent geometric-radiometric parameters and assumptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.