Abstract

Radar backscatter experiments were conducted at 35 and 95 GHz to measure the response of snow-covered ground to snow depth, liquid water content, and ice crystal size. The measurements included observations over a wide angular range extending between normal incidence and 60/spl deg/ for all linear polarization combinations. A numerical radiative transfer model was developed and adapted to fit the experimental observations. Next, the radiative transfer model was exercised over a wide range of conditions and the generated data were used to develop relatively simple semi-empirical expressions that relate the backscattering coefficient (for each linear polarization) to incidence angle, snow depth, crystal size, and liquid water content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.