Abstract
An extremely simplified picture of the film deposition process is demonstrated by a semi-empirical application of the Π theorem of dimensional analysis. The growth of hydrogenated carbon-nitrides (a-CN:H) by reactive sputtering is considered as an example and elementarily modelled. By theoretically deriving a scaling law for the microscopic variables involved, a single dimensionless combination of the deposition parameters is generated, providing the rules according to which the growth conditions can be changed without significantly modifying the film nanostructure and stoichiometry. The physical laws governing the process are approximated through analytical functions of this combination, able to effectively account for the compositional and structural changes described by the evolution of the Raman spectra of the films. These functions, theoretically deduced from very simple models, are empirically demonstrated by fitting the experimental data. The efficacy of the proposed method, applicable to all materials and deposition techniques, is here shown for a given variation range of the growth conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.