Abstract

The precise measuring of vehicle location has been a critical task in enhancing the autonomous driving in terms of intelligent decision making and safe transportation. Internet of Vehicles ( IoV ) is an important infrastructure in support of autonomous driving, allowing real-time road information exchanging and sharing for localizing vehicles. Global positioning System ( GPS ) is widely used in the traditional IoV system. GPS is unable to meet the key application requirements of autonomous driving due to meter level error and signal deterioration. In this article, we propose a novel solution, named Semi-Direct Monocular Visual-Inertial Odometry using Point and Line Features ( SDMPL-VIO ) for precise vehicle localization. Our SDMPL-VIO model takes advantage of a low-cost Inertial Measurement Unit ( IMU ) and monocular camera, using them as the sensor to acquire the surrounding environmental information. Visual-Inertial Odometry ( VIO ), taking into account both point and line features, is proposed, which is able to deal with both weak texture and dynamic environment. We use a semi-direct method to deal with keyframes and non-keyframes, respectively. Dual sliding window mechanisms can effectively fuse point-line and IMU information. To evaluate our SDMPL-VIO system model, we conduct extensive experiments on both an indoor dataset (i.e., EuRoC) and an outdoor dataset (i.e., KITTI) from the real-world applications, respectively. The experimental results show that the accuracy of SDMPL-VIO proposed by us is better than the mainstream VIO system at present. Especially in the weak texture of the datasets, fast-moving datasets, and other challenging datasets, SDMPL-VIO has a relatively high robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.