Abstract

The generalized dissipative particle dynamics (DPD) equation derived from the generalized Langevin equation under Markovian approximations is used to simulate coarse-grained (CG) water cells. The mean force and the friction coefficients in the radial and transverse directions needed for DPD equation are obtained directly from the all atomistic molecular dynamics (AAMD) simulations. But the dissipative friction forces are overestimated in the Markovian approximation, which results in wrong dynamic properties for the CG water in the DPD simulations. To account for the non-Markovian dynamics, a rescaling factor is introduced to the friction coefficients. The value of the factor is estimated by matching the diffusivity of water. With this semi-bottom-up mapping method, the radial distribution function, the diffusion constant, and the viscosity of the coarse-grained water system computed with DPD simulations are all in good agreement with AAMD results. It bridges the microscopic level and mesoscopic level with consistent length and time scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call