Abstract
To obtain a high level of system performance, a database administrator (DBA) must choose a set of indices that is appropriate for the workload. The system can aid in this challenging task by providing recommendations for the index configuration. We propose a new index recommendation technique, termed semi-automatic tuning, that keeps the DBA "in the loop" by generating recommendations that use feedback about the DBA's preferences. The technique also works online, which avoids the limitations of commercial tools that require the workload to be known in advance. The foundation of our approach is the Work Function Algorithm, which can solve a wide variety of online optimization problems with strong competitive guarantees. We present an experimental analysis that validates the benefits of semi-automatic tuning in a wide variety of conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.