Abstract

Evaluation of pavements' crack severity levels currently relies heavily on width measurement, which necessitates the development of a rapid, and high-accurate, automatic measurement approach for complex pavement cracks. This paper presents an OrthoBoundary algorithm that leverages the crack boundary and skeleton directions to determine crack propagation. Comparative analysis has been conducted between OrthoBoundary and Area-Length, Skeleton Shortest Distance (SSD), Edge Shortest Distance (ESD), and Orthogonal Projection (OP) methods. Results indicate that the OrthoBoundary algorithm achieves an average accuracy of 90.10%, outperforming the Area-Length (86.60%), SSD (76.01%), ESD (87.24%), and OP (88.07%) methods. Notably, the OrthoBoundary algorithm also exhibits processing speeds approximately 120 times faster than other considered methods while demonstrating improved robustness and user-friendliness. It has significant potential to quantify and assess the severity of pavement cracks, as well as to facilitate maintenance decision-making processes in road infrastructure management systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call