Abstract

Objectives To compare metal artifacts and evaluation of metal artifact reduction algorithms during probe positioning in computed tomography (CT)-guided microwave ablation (MWA), cryoablation (CRYO), and radiofrequency ablation (RFA). Materials and methods Using CT guidance, individual MWA, CRYO, and RFA ablation probes were placed into the livers of 15 pigs. CT imaging was then performed to determine the probe’s position within the test subject’s liver. Filtered back projection (B30f) and iterative reconstructions (I30-1) were both used with and without dedicated iterative metal artifact reduction (iMAR) to generate images from the initial data sets. Semi-automatic segmentation-based quantitative evaluation was conducted to estimate artifact percentage within the liver, while qualitative evaluation of metal artifact extent and overall image quality was performed by two observers using a 5-point Likert scale: 1-none, 2-mild, 3-moderate, 4-severe, 5-non-diagnostic. Results Among MWA, RFA, and CRYO, compared with non-iMAR in B30f reconstruction, the largest extent of artifact volume percentages were observed for CRYO (11.5–17.9%), followed by MWA (4.7–6.6%) and lastly in RFA (5.5–6.2%). iMAR significantly reduces metal artifacts for CRYO and MWA quantitatively (p = 0.0020; p = 0.0036, respectively) and qualitatively (p = 0.0001, p = 0.0005), but not for RFA. No significant reduction in metal artifact percentage was seen after applying iterative reconstructions (p > 0.05). Noise, contrast-to-noise-ratio, or overall image quality did not differ between probe types, irrespective of the application of iterative reconstruction and iMAR. Conclusion A dedicated metal artifact algorithm may decrease metal artifacts and improves image quality significantly for MWA and CRYO probes. Their application alongside with dedicated metal artifact algorithm should be considered during CT-guided positioning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.