Abstract
Background18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is increasingly applied to the diagnosis of bone marrow failure such as myeloproliferative neoplasm, aplastic anemia, and myelodysplastic syndrome, as well as malignant lymphoma and multiple myeloma. However, few studies have shown a normal FDG uptake pattern. This study aimed to establish a standard of bone marrow FDG uptake by a reproducible quantitative method with fewer steps using deep learning-based organ segmentation.MethodsBone marrow PET images were obtained using segmented whole-spine and pelvic bone marrow cavity CT as mask images using a commercially available imaging workstation that implemented an automatic organ segmentation algorithm based on deep learning. The correlation between clinical indicators and quantitative PET parameters, including histogram features, was evaluated.ResultsA total of 98 healthy adults were analyzed. The volume of bone marrow PET extracted in men was significantly higher than that in women (p < 0.0001). Univariate and multivariate regression analyses showed that mean of standardized uptake value corrected by lean body mass (SULmean) and entropy in both men and women were inversely correlated with age (all p < 0.0001), and SULmax in women were also inversely correlated with age (p = 0.011).ConclusionA normal FDG uptake pattern was demonstrated by simplified FDG PET/CT bone marrow quantification.
Highlights
18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is increasingly applied to the diagnosis of bone marrow failure such as myeloproliferative neoplasm, aplastic anemia, and myelodysplastic syndrome, as well as malignant lymphoma and multiple myeloma
Whole-body 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is a glucose metabolism-based imaging technique that is currently used for staging, restaging, and therapeutic evaluation of malignant tumors
FDG-PET/CT has enabled less invasive visualization of glucose metabolism in bone marrow (BM) throughout the body, which was considerably difficult with conventional morphological imaging such as CT and magnetic resonance imaging [10]
Summary
18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is increasingly applied to the diagnosis of bone marrow failure such as myeloproliferative neoplasm, aplastic anemia, and myelodysplastic syndrome, as well as malignant lymphoma and multiple myeloma. This study aimed to establish a standard of bone marrow FDG uptake by a reproducible quantitative method with fewer steps using deep learning-based organ segmentation. Whole-body 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is a glucose metabolism-based imaging technique that is currently used for staging, restaging, and therapeutic evaluation of malignant tumors. FDG PET/CT has been increasingly applied to the diagnosis of bone marrow failure such as myeloproliferative neoplasm, aplastic anemia, and myelodysplastic syndrome as well as malignant lymphoma and multiple myeloma [11,12,13,14]. The quantitative values representing the FDG uptake pattern of normal bone marrow as a baseline have been undefined
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.