Abstract

A series of polyurethane–poly(methyl acrylate) sequential interpenetrating polymer networks containing 40 wt % polyurethane were prepared. The triol/diol ratio used in the preparation of the first formed polyurethane network was changed so that the average molecular weight between crosslinks ranged from 9500 to 500 g/mol. In addition to decreasing this average molecular weight, changing the triol/diol ratio alters the hard segment content of the polyurethane. The extent of mixing of the components in these IPNs was investigated using electron microscopy, dynamic mechanical analysis, tensile testing, and sonic velocity measurements. The polyurethane networks were also characterized by swelling studies. It was concluded that, as the triol/diol ratio increased, the extent of mixing increased and there was evidence of phase separation of the hard segments of the polyurethane component at high triol/diol ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.