Abstract

The semi-analytical solutions to Fredlund and Hasan’s one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are presented. Two variables are introduced to transform the two coupled governing equations of pore-water and pore-air pressures into an equivalent set of partial differential equations (PDFs), which are easily solved by the Laplace transform method. Then, the pore-water pressure, pore-air pressure, and soil settlement are obtained in the Laplace domain. The Crump method is adopted to perform the inverse Laplace transform in order to obtain the semi-analytical solutions in the time domain. It is shown that the proposed solutions are more applicable to various types of boundary conditions and agree well with the existing solutions from the literature. Several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with single, double, mixed, and semi-permeable drainage boundaries. The changes in the pore-air and pore-water pressures and the soil settlement with the time factor at different values of the semi-permeable drainage boundary parameters are illustrated. In addition, parametric studies are con- ducted on the pore-air and pore-water pressures at different ratios (the air permeability coefficient to the water permeability coefficient) and depths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call