Abstract

In this current work, the heat transfer analysis for the unsteady squeezing flow of a viscous nanofluid between two parallel plates considering Fourier heat flux model have been explored. The partial differential equations representing flow model are reduced to nonlinear ordinary differential equations by introducing a similarity transformation. The dimensionless and nonlinear ordinary differential equations of the velocity and temperatures functions obtained are solved by employing The Homotopy Perturbation Method (HPM). The results found in this peper are verified by comparing it with the results obtained using the numerical method RK4, The results obtained are agree with this numerical solution. The effects of different parameters on the velocity and temperature profiles are examined graphically, and numerical calculations for the skin friction coefficient and local Nusselt number are tabulated. It is found an excellent agreement in the comparative study with literature results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.