Abstract

Abstract This study introduces an approximate analytical model to predict the post-buckling response of cylinders with tailored non-uniform distributed stiffness. The shell's wall thickness, and thus its stiffness, is tailored so as to obtain multiple controlled elastic local buckling events when the cylinder is subjected to uniform axial compression. The proposed model treats cylinder segments of different stiffness as individual panels and combines their response by considering them as connected linear or nonlinear springs. The governing equations for the panels are formulated using von Karman's theory and solved by Galerkin's approximate method for a predefined radial deformation. Radial deformation functions are used to improve the model's accuracy, and results show that the model's accuracy increases significantly with the number of considered radial functions. The model's predicted axial response for different cylinders is compared with results from experiments on three-dimensional printed samples. Results indicate that this model accurately predicts the order of the buckling events, while the buckling forces from the model are higher than those measured experimentally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.