Abstract

ABSTRACT Substructures of dark matter halo, called subhaloes, provide important clues to understand the nature of dark matter. We construct a useful model to describe the properties of subhalo mass functions based on the well-known analytical prescriptions, the extended Press–Schechter theory. The unevolved subhalo mass functions at arbitrary mass scales become describable without introducing free parameters. The different host halo evolution histories are directly recast to their subhalo mass functions. As applications, we quantify the effects from (i) the Poisson fluctuation, (ii) the host-mass scatter, and the (iii) different tidal evolution models on observables in the current Universe with this scheme. The Poisson fluctuation dominates in the number count of the mass ratio to the host of $\sim {\cal O}(10^{-2})$, where the intrinsic scatter is smaller by a factor of a few. The host-mass scatter around its mean does not affect the subhalo mass function. Different models of the tidal evolution predict a factor of ∼2 difference in numbers of subhaloes with $\lesssim {\cal O}(10^{-5})$, while the dependence of the Poisson fluctuation on the tidal evolution models is subtle. The scheme provides a new tool for investigating the smallest scale structures of our Universe which are to be observed in near future experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call