Abstract

Semi-analytical equations are developed for aiding the process of designing terahertz graphene-based rectangular dipole antennas lying on glass substrates. It directly provides the dipole length required for obtaining resonance at a desired frequency since antenna width and graphene chemical potential are known. By using the finite-difference time-domain (FDTD) method, a large number of computational simulations were performed considering several combinations of antenna dimensions and chemical potential values. The simulation results were used along with graphene electrostatic scaling law combined with the least squares method to optimize the formulation coefficients. With the optimized coefficients, we obtain very satisfying accuracy levels. In the frequency range from 0.5 THz to 3.0 THz, the average relative absolute error is 1.50%, with maximum relative absolute error of 6.77%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.