Abstract

A novel semi-analytical formulation is presented for the linearized dynamic analysis of spiral-grooved mechanical gas face seals. The linearized rotordynamic properties of the gas film are numerically computed and then represented analytically by a constitutive model consisting of a cosine modified Prony series. The cosine modification enables the Prony series to characterize the gas film properties of face seals in applications with large compressibility numbers. The gas film correspondence principle is then employed to couple the constitutive model to the dynamics of the mechanical face seal. Closed-form solutions are presented for the transient natural response to initial velocity conditions, the steady-state response to rotor runout and initial stator misalignment, the transmissibility ratios, and the stability threshold. Results from the closed-form solutions are all within a few percent of the results from a full nonlinear numerical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.