Abstract

Abstract In the present research study, time-fractional hyperbolic telegraph equations are solved iteratively using natural transform in one, two, and three dimensions. The fractional derivative is considered in the Caputo sense. These equations serve as a model for the wave theory process of signal processing and transmission of electric impulses. To evaluate the validity and effectiveness of the suggested strategy, a graphical comparison of approximated and exact findings is performed. Convergence analysis of the approximations utilising L ∞ {L}_{\infty } has been done using tables. The suggested approach may successfully and without errors solve a wide variety of ordinary differential equations, partial differential equations (PDEs), fractional PDEs, and fractional hyperbolic telegraph equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call