Abstract
A systematic treatment of the three-dimensional Poisson equation via singular and hypersingular boundary integral equation techniques is investigated in the context of a Galerkin approximation. Developed to conveniently deal with domain integrals without a volume-fitted mesh, the proposed method initially converts domain integrals featuring the Newton potential and its gradient into equivalent surface integrals. Then, the resulting boundary integrals are evaluated by means of well-established cubature methods. In this transformation, weakly-singular domain integrals, defined over simply- or multiply-connected domains with Lipschitz boundaries, are rigorously converted into weakly-singular surface integrals. Combined with the semi-analytic integration approach developed for potential problems to accurately calculate singular and hypersingular Galerkin surface integrals, this technique can be employed to effectively deal with mixed boundary-value problems without the need to partition the underlying domain into volume cells. Sample problems are included to validate the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.