Abstract
Semi-active systems with variable stiffness and damping have demonstrated excellent performance. However, conventional devices for controlling variable stiffness are complicated and difficult to implement in most applications. To address this issue, a new configuration using two controllable dampers and two constant springs is proposed. This paper presents theoretical and experimental analyses of the proposed system. A Voigt element and a spring in series are used to control the system stiffness. The Voigt element is comprised of a controllable damper and a constant spring. The equivalent stiffness of the whole system is changed by controlling the damper in the Voigt element, and the second damper which is parallel with the other elements provides variable damping for the system. The proposed system is experimentally implemented using two magnetorheological fluid dampers for the controllable dampers. Eight different control schemes involving soft suspension, stiff suspensions with low and high damping, damping on–off (soft and stiff), stiffness on–off (low and high), and damping and stiffness on–off control are explored. The time and frequency responses of the system to sinusoidal, impulse and random excitations show that variable stiffness and damping control can be realized by the proposed system. The system with damping and stiffness on–off control provides excellent vibration isolation for a broad range of excitations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.