Abstract

A novel control strategy that combines model predictive control (MPC) with semi-active vibration control that uses a highly effective, energy-efficient, and stable piezoelectric transducer is proposed in this paper. Incorporating MPC into semi-active vibration control enables significant improvements in control performance and robustness. However, it is challenging to directly predict and optimize the input trajectory because the semi-active input has a state-dependent discontinuous nature. To realize effective optimal control, we need a strategy that can predict the discontinuous semi-active input trajectory in a reasonable manner and is computationally cost-efficient. The proposed method employs a prediction algorithm based on a tree data structure. The proposed algorithm achieves flexible prediction and optimization of a semi-active input trajectory with a simple tree traversal. In addition, the proposed method employs a switching criterion to minimize the computational cost and implement fast prediction and optimization. The proposed method is called predictive switching vibration control with tree-based formulation and optimization, or the PSTFO method. The simulation proved that the proposed PSTFO method can predict discontinuous semi-active input and realizes optimal vibration control performance and high robustness. In addition, the high control performance and robustness of the proposed method were experimentally validated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call