Abstract
To detect the person's intention for the control of upper-limb exoskeleton robot, we propose a recognition frame of continuous hand gestures. This frame is mainly concentrated on dynamic segmentation and real time gesture recognition based on sEMG. The hand gesture was modeled and decomposed by the use of Gaussian Mixture Model-Hidden Markov Models (GMM-HMM). GMMs are employed as a sub-states of HMMs to decode sEMG feature of gesture. The log-likelihood threshold and KL-divergence threshold are adopted to select target gesture model. In myoelectric control schemes, the sEMG data are collected by Myo armband 8-channels sEMG sensors. The proposed framework has ideal classification accuracy and its simpler acquisition armband make it attractive to a real-time myoelectric control system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.