Abstract

Semaphorins are major chemorepellents for developing neuronal projections. Their persistent expression at adult stages suggests that they may contribute to the functioning of neuronal circuits. We investigated the functional properties of semaphorin3A (Sema3A) in adult hippocampal neurons, and report that exogenous application of this cue decreases the efficacy of synaptic transmission evoked in the CA1 region of hippocampal slices. In situ hybridization, imaging and biochemical techniques showed that the Sema3A receptor component neuropilin-1 is present at hippocampal synapses and localizes in the presynaptic membrane. In differentiated cultured hippocampal neurons, Sema3A elicited Erk1/2 phosphorylation in somata and neuritic compartments. Furthermore, Sema3A application resulted in a striking reduction of synaptophysin and postsynaptic density 95 puncta without affecting the axon diameter. These observations reveal novel functional potentialities for secreted semaphorins, which suggest that these cues could modulate the morphology and function of synapses in the adult brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.