Abstract

Purpose This study aimed to explore the effect of the Semaphorin3A (Sema3A)/Neuropilin-1 (Nrp-1) pathway on Müller cell activities and endoplasmic reticulum (ER) stress induced by high glucose (HG) in vitro. Methods The primary Müller cells of C57BL/6J mice were isolated and cultured in normal or high glucose medium. The expression of endogenous Sema3A and its coreceptor Nrp-1 was measured by Western blot. Müller cells were incubated with exogenous recombinant Sema3A protein or transfected with lentiviral vectors expressing small hairpin RNA (shRNA) to knock down the expression of endogenous Sema3A. The proliferation of Müller cells was detected by CCK-8 assay and EdU staining. The migratory ability was detected by the Transwell migration assay. The level of endoplasmic reticulum (ER) stress was analyzed through the detection of GRP78/BiP, IRE1α, phosphorylated IRE1αS724 (p-IRE1αS724), and the splicing rate of XBP1 (XBP1s/XBP1) by using immunofluorescence, Western blot or quantitative polymerase chain reaction (qPCR). Results HG induced the upregulation of endogenous Sema3A and Nrp-1 receptors in Müller cells. The expression of GRP78/BiP and IRE1α was upregulated by HG, with an increased splicing rate of XBP1. Exogenous Sema3A inhibited HG-induced Müller cell proliferation, migration, and GRP78/BiP-IRE1α-XBP1 axis activation. Knockdown of Sema3A promoted proliferation, migration, and ER stress induced by high glucose in Müller cells. Conclusion Sema3A inhibited the increased proliferative and migratory activities induced by high glucose by attenuating ER stress in Müller cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call