Abstract
In this paper we provide semantics for normal logic programs enriched with structuring mechanisms and scoping rules. Specifically, we consider constructive negation and expressions of the form Q⊃G in goals, where Q is a program unit, G is a goal and ⊃ stands for the so-called embedded implication. Allowing the use of these expressions can be seen as adding block structuring to logic programs. In this context, we consider static and dynamic rules for visibility in blocks. In particular, we provide new semantic definitions for the class of normal logic programs with both visibility rules. For the dynamic case we follow a standard approach. We first propose an operational semantics. Then, we define a model-theoretic semantics in terms of ordered structures which are a kind of intuitionistic Beth structures. Finally, an (effective) fixpoint semantics is provided and we prove the equivalence of these three definitions. In order to deal with the static case, we first define an operational semantics and then we present an alternative semantics in terms of a transformation of the given structured programs into flat ones. We finish by showing that this transformation preserves the computed answers of the given static program.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.