Abstract

We introduce a concrete semantics for floating-point operations which describes the propagation of roundoff errors throughout a calculation. This semantics is used to assert the correctness of a static analysis which can be straightforwardly derived from it. In our model, every elementary operation introduces a new first order error term, which is later propagated and combined with other error terms, yielding higher order error terms. The semantics is parameterized by the maximal order of error to be examined and verifies whether higher order errors actually are negligible. We consider also coarser semantics computing the contribution, to the final error, of the errors due to some intermediate computations. As a result, we obtain a family of semantics and we show that the less precise ones are abstractions of the more precise ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.