Abstract

While much of the current study on quantum computation employs low-level formalisms such as quantum circuits, several high-level languages/calculi have been recently proposed aiming at structured quantum programming. The current work contributes to the semantical study of such languages by providing interaction-based semantics of a functional quantum programming language; the latter is, much like Selinger and Valiron's, based on linear lambda calculus and equipped with features like the ! modality and recursion. The proposed denotational model is the first one that supports the full features of a quantum functional programming language; we prove adequacy of our semantics. The construction of our model is by a series of existing techniques taken from the semantics of classical computation as well as from process theory. The most notable among them is Girard's Geometry of Interaction (GoI), categorically formulated by Abramsky, Haghverdi and Scott. The mathematical genericity of these techniques—largely due to their categorical formulation—is exploited for our move from classical to quantum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.