Abstract

Parametric face models, like morphable and blendshape models, have shown great potential in face representation, reconstruction, and animation. However, all these models focus on large-scale facial geometry. Facial details like wrinkles are not parameterized in these models, impeding their accuracy and realism. In this paper, we propose a method to learn a Semantically Disentangled Variational Autoencoder (SDVAE) to parameterize facial details and support independent detail manipulation as an extension of an off-the-shelf large-scale face model. Our method utilizes the non-linear capability of Deep Neural Networks for detail modeling, achieving better accuracy and greater representation power compared with linear models. In order to disentangle the semantic factors of identity, expression and age, we propose to eliminate the correlation between different factors in an adversarial manner. Therefore, wrinkle-level details of various identities, expressions, and ages can be generated and independently controlled by changing latent vectors of our SDVAE. We further leverage our model to reconstruct 3D faces via fitting to facial scans and images. Benefiting from our parametric model, we achieve accurate and robust reconstruction, and the reconstructed details can be easily animated and manipulated. We evaluate our method on practical applications, including scan fitting, image fitting, video tracking, model manipulation, and expression and age animation. Extensive experiments demonstrate that the proposed method can robustly model facial details and achieve better results than alternative methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.