Abstract
With the large-scale adoption of GPS equipped mobile sensing devices, positional data generated by moving objects (e.g., vehicles, people, animals) are being easily collected. Such data are typically modeled as streams of spatio-temporal (x,y,t) points, called trajectories . In recent years trajectory management research has progressed significantly towards efficient storage and indexing techniques, as well as suitable knowledge discovery. These works focused on the geometric aspect of the raw mobility data. We are now witnessing a growing demand in several application sectors (e.g., from shipment tracking to geo-social networks) on understanding the semantic behavior of moving objects. Semantic behavior refers to the use of semantic abstractions of the raw mobility data, including not only geometric patterns but also knowledge extracted jointly from the mobility data and the underlying geographic and application domains information. The core contribution of this article lies in a semantic model and a computation and annotation platform for developing a semantic approach that progressively transforms the raw mobility data into semantic trajectories enriched with segmentations and annotations. We also analyze a number of experiments we did with semantic trajectories in different domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Intelligent Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.