Abstract

BackgroundBiofuels produced from biomass are considered to be promising sustainable alternatives to fossil fuels. The conversion of lignocellulose into fermentable sugars for biofuels production requires the use of enzyme cocktails that can efficiently and economically hydrolyze lignocellulosic biomass. As many fungi naturally break down lignocellulose, the identification and characterization of the enzymes involved is a key challenge in the research and development of biomass-derived products and fuels. One approach to meeting this challenge is to mine the rapidly-expanding repertoire of microbial genomes for enzymes with the appropriate catalytic properties.ResultsSemantic technologies, including natural language processing, ontologies, semantic Web services and Web-based collaboration tools, promise to support users in handling complex data, thereby facilitating knowledge-intensive tasks. An ongoing challenge is to select the appropriate technologies and combine them in a coherent system that brings measurable improvements to the users. We present our ongoing development of a semantic infrastructure in support of genomics-based lignocellulose research. Part of this effort is the automated curation of knowledge from information on fungal enzymes that is available in the literature and genome resources.ConclusionsWorking closely with fungal biology researchers who manually curate the existing literature, we developed ontological natural language processing pipelines integrated in a Web-based interface to assist them in two main tasks: mining the literature for relevant knowledge, and at the same time providing rich and semantically linked information.

Highlights

  • Biofuels produced from biomass are considered to be promising sustainable alternatives to fossil fuels

  • System design we provide an overview of our system architecture, the semantic resources we deployed, and the text mining pipelines we developed

  • We make use of that ability by providing the annotators with documents we pre-annotate with our Natural Language Processing (NLP) pipelines throughout its development

Read more

Summary

Introduction

Biofuels produced from biomass are considered to be promising sustainable alternatives to fossil fuels. The conversion of lignocellulose into fermentable sugars for biofuels production requires the use of enzyme cocktails that can efficiently and economically hydrolyze lignocellulosic biomass. As many fungi naturally break down lignocellulose, the identification and characterization of the enzymes involved is a key challenge in the research and development of biomass-derived products and fuels. As the petroleum reserves decrease, producing sustainable liquid fuels with low environmental impact is one of the major technological challenges the world is facing today. Industrialized and developing countries consider biofuels, fuels produced from biomass, as a promising alternative to fossil fuels. There are many advantages of using biofuels in terms of economic, environmental and energy security impacts [1]: from biomass sources, biofuels can be sustainable and contribute to reducing carbon dioxide emissions. Underutilized agricultural and forestry residues, such as agricultural straws, residues from pulp and paper production and other “green” garbage, are composed of lignocellulose, which is the most abundant organic material on earth

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call